2078 independent reflections

 $R_{\rm int} = 0.010$

1457 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Perillartine

Xian-You Yuan,^a Min Zhang^a and Seik Weng Ng^{b*}

^aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 6 August 2009; accepted 6 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.043; wR factor = 0.139; data-to-parameter ratio = 8.9.

The chiral title compound [systematic name: 4-(1-methylvinyl)cyclohexene-1-carbaldehyde oxime], C₁₀H₁₅NO, crystallizes with two molecules in the asymmetric unit, one of which shows disorder of its propenyl substituent over two sets of sites in a 50:50 ratio. In both molecules, the six-membered carbaldehyde oxime ring adopts an approximate envelope conformation in which the C atom bearing the propenyl substituent represents the flap position. In both molecules, the plane passing through the propenyl substituent is nearly perpendicular to the mean plane of the six-membered ring [dihedral angles = 84.6 (6) and 87.4 $(3)^{\circ}$]. In the crystal, the two independent molecules are linked by a pair O-H···N hydrogen bonds across a pseudo-inversion centre, generating a dimer. The unit cell of the known racemate of the title compound is similar to the cell found here, but with space group $P\overline{1}$.

Related literature

Perillartine or perillartin [(S)-4-(prop-1-en-2-yl)cyclohex-1ene carbaldehyde oxime], the oxime of perillaldehyde, is 2000 times sweeter than sucrose; see the handbook of artificial sweeteners by O'Brien Nabors & Gelardi (2001). For the crystal structure of the racemic compound, see: Hooft *et al.* (1990).

Experimental

Crystal data

-	
$C_{10}H_{15}NO$	$\gamma = 104.602 \ (1)^{\circ}$
$M_r = 165.23$	V = 488.25 (7) Å ³
friclinic, P1	Z = 2
u = 7.2679 (6) Å	Mo $K\alpha$ radiation
p = 8.1702 (7) Å	$\mu = 0.07 \text{ mm}^{-1}$
x = 8.9426 (8) Å	T = 293 K
$\alpha = 105.150 \ (1)^{\circ}$	$0.48 \times 0.42 \times 0.22 \text{ mm}$
$\beta = 95.658 \ (1)^{\circ}$	

Data collection

Bruker SMART diffractometer Absorption correction: none 4074 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$ $vR(F^2) = 0.139$	H atoms treated by a mixture of independent and constrained
S = 1.07	refinement
078 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
34 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$
21 restraints	

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1 - H1 \cdots N2 \\ O2 - H2 \cdots N1 \end{array}$	0.85 (4)	2.00 (2)	2.831 (4)	164 (5)
	0.85 (4)	2.04 (2)	2.811 (4)	150 (4)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the Key Subject Construction Project of Hunan Province (No. 2006–180), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023), the NSF of Hunan Province (No. 09 J J3028) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5034).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hooft, R. W. W., van der Sluis, P., Kanters, J. A. & Kroon, J. (1990). Acta Cryst. C46, 1133–1135. O'Brien Nabors I. & Gelardi R. C. (2001). Alternative Sweeteners. 3rd ed.

O'Brien Nabors, L. & Gelardi, R. C. (2001). *Alternative Sweeteners*, 3rd ed. Boca Raton: CRC Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, o2149 [doi:10.1107/S1600536809031225]

Perillartine

X.-Y. Yuan, M. Zhang and S. W. Ng

Experimental

Hydroxylamine hydrochloride (3.15 g, 0.045 mol) in water (50 ml) was treated with sodium carbonate (2.12 g, 0.02 mol). To this solution was added perillaldehyde (4.50 g, 0.03 mol). The mixture was kept at 318 K for 2 h. The solution was cooled and the solid that formed was heated in water for another 2 h. This was repeated a second time. The product was recrystallized from ethyl acetate to yield colourless blocks of (I) (yield 5.5 g, 80%); m.p. 374–375 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95-0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.85±0.01 Å; their temperature factors were freely refined.

One of the propenyl groups is disordered over two positions; the disorder could not be refined, and was assumed to be a 1:1 type of disorder that involved only the terminal carbon atoms. The C–C single bond distance was restrained to 1.54 ± 0.01 Å and the double bond distance to 1.35 ± 0.01 Å. The displacement factors of the primed atoms were restrained to neqrly equal those of the umprimed ones, and the anisotropic displacement factors were restrained to be nearly isotropic.

Friedel pairs were merged. The configuration of the molecule was assumed to be that of the chiral starting reagent (*i.e.*, *S*-configuration).

Figures

Fig. 1. The molecular structure of (I) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.

4-(1-Methylvinyl)cyclohexene-1-carbaldehyde oxime

Crystal data	
C ₁₀ H ₁₅ NO	Z = 2
$M_r = 165.23$	$F_{000} = 180$
Triclinic, P1	$D_{\rm x} = 1.124 {\rm ~Mg~m}^{-3}$
Hall symbol: P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.2679 (6) Å	Cell parameters from 1889 reflections

b = 8.1702 (7) Å
c = 8.9426 (8) Å
$\alpha = 105.150 (1)^{\circ}$
$\beta = 95.658 (1)^{\circ}$
$\gamma = 104.602 (1)^{\circ}$
V = 488.25 (7) Å ³

Data collection

Bruker SMART diffractometer	1457 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.014$
Monochromator: graphite	$\theta_{\text{max}} = 27.1^{\circ}$
<i>T</i> = 293 K	$\theta_{\min} = 2.4^{\circ}$
φ and ω scans	$h = -9 \rightarrow 9$
Absorption correction: None	$k = -10 \rightarrow 10$
4074 measured reflections	$l = -11 \rightarrow 11$
2078 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.139$	$w = 1/[\sigma^2(F_o^2) + (0.0793P)^2 + 0.0172P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
2078 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
234 parameters	$\Delta \rho_{\rm min} = -0.12 \ e \ {\rm \AA}^{-3}$
21 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

 $\theta = 2.4-26.9^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.48 \times 0.42 \times 0.22 \text{ mm}$

methods

								. 2
Fractional	atomic	coordinates	and iso	tronic or	eauivalent	isotronic	displacement	narameters $(Å^2)$
i raciionai	aionnic	coorainaics	<i>ana</i> 1501	ropic or	cquivaieni	isonopie	aispiacemeni	pur unicici s (11)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.5000 (4)	0.5002 (4)	0.5001 (3)	0.0885 (8)	
O2	0.7482 (4)	0.9157 (4)	0.6717 (4)	0.0922 (8)	
N1	0.4289 (4)	0.6405 (4)	0.4831 (3)	0.0724 (8)	
N2	0.8170 (4)	0.7770 (4)	0.6971 (3)	0.0727 (7)	
C1	0.2564 (5)	0.5857 (4)	0.4097 (4)	0.0699 (8)	
H1A	0.1932	0.4649	0.3775	0.084*	
C2	0.1551 (5)	0.7069 (4)	0.3745 (4)	0.0657 (8)	
C3	-0.0246 (5)	0.6464 (4)	0.2976 (4)	0.0758 (9)	
H3	-0.0836	0.5251	0.2706	0.091*	
C4	-0.1401 (5)	0.7574 (4)	0.2510 (4)	0.0776 (9)	

H4A	-0.2386	0.7643	0.3161	0.093*	
H4B	-0.2048	0.7010	0.1425	0.093*	
C5	-0.0167 (5)	0.9448 (4)	0.2672 (4)	0.0760 (9)	
Н5	0.0572	0.9363	0.1809	0.091*	
C6	0.1263 (6)	1.0142 (4)	0.4182 (6)	0.0973 (13)	
H6A	0.0572	1.0176	0.5058	0.117*	
H6B	0.2013	1.1345	0.4291	0.117*	
C7	0.2618 (6)	0.9016 (5)	0.4248 (5)	0.0905 (12)	
H7A	0.3552	0.9237	0.3567	0.109*	
H7B	0.3320	0.9354	0.5314	0.109*	
C8	-0.1413 (5)	1.0638 (4)	0.2484 (4)	0.0784 (10)	0.50
C9	-0.2394 (18)	1.127 (2)	0.3557 (11)	0.088 (3)	0.50
H9A	-0.3134	1.1999	0.3366	0.105*	0.50
H9B	-0.2342	1.0994	0.4501	0.105*	0.50
C10	-0.1478 (19)	1.1072 (18)	0.0954 (12)	0.093 (3)	0.50
H10A	-0.2124	1.0017	0.0107	0.139*	0.50
H10B	-0.0186	1.1541	0.0797	0.139*	0.50
H10C	-0.2167	1.1936	0.0979	0.139*	0.50
C8'	-0.1413 (5)	1.0638 (4)	0.2484 (4)	0.0784 (10)	0.50
C9'	-0.1960 (17)	1.0794 (19)	0.1074 (12)	0.088 (3)	0.50
H9'A	-0.2772	1.1487	0.0964	0.105*	0.50
H9'B	-0.1529	1.0210	0.0200	0.105*	0.50
C10'	-0.208 (2)	1.157 (2)	0.3937 (11)	0.093 (3)	0.50
H10D	-0.2765	1.2350	0.3683	0.139*	0.50
H10E	-0.0981	1.2236	0.4747	0.139*	0.50
H10F	-0.2922	1.0702	0.4303	0.139*	0.50
C11	0.9893 (5)	0.8319 (4)	0.7688 (4)	0.0733 (9)	
H11	1.0553	0.9518	0.7953	0.088*	
C12	1.0866 (5)	0.7107 (4)	0.8108 (4)	0.0644 (8)	
C13	1.2696 (5)	0.7692 (4)	0.8782 (5)	0.0781 (10)	
H13	1.3307	0.8898	0.9017	0.094*	
C14	1.3864 (5)	0.6556 (4)	0.9198 (5)	0.0798 (10)	
H14A	1.4061	0.6763	1.0328	0.096*	
H14B	1.5121	0.6889	0.8899	0.096*	
C15	1.2887 (4)	0.4597 (4)	0.8383 (4)	0.0632 (7)	
H15	1.2949	0.4391	0.7262	0.076*	
C16	1.0754 (4)	0.4179 (4)	0.8527 (5)	0.0746 (9)	
H16A	1.0134	0.2921	0.8053	0.090*	
H16B	1.0640	0.4475	0.9631	0.090*	
C17	0.9742 (5)	0.5210 (4)	0.7724 (5)	0.0763 (10)	
H17A	0.9523	0.4671	0.6594	0.092*	
H17B	0.8492	0.5137	0.8041	0.092*	
C18	1.3935 (4)	0.3442 (4)	0.8964 (4)	0.0666 (8)	
C19	1.4889 (6)	0.2566 (5)	0.8038 (5)	0.0813 (9)	
H19A	1.5548	0.1866	0.8401	0.098*	
H19B	1.4904	0.2646	0.7021	0.098*	
C20	1.3869 (7)	0.3355 (6)	1.0597 (5)	0.0934 (11)	
H20A	1.4500	0.2509	1.0786	0.140*	
H20B	1.2548	0.2998	1.0733	0.140*	

H20C	1.4516	0.4500	1.1328	0.140*
H1	0.599 (5)	0.568 (5)	0.568 (5)	0.115 (18)*
H2	0.641 (4)	0.866 (5)	0.609 (5)	0.110 (17)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.096 (2)	0.0817 (17)	0.1005 (18)	0.0444 (17)	0.0085 (16)	0.0344 (14)
02	0.095 (2)	0.0784 (16)	0.114 (2)	0.0444 (16)	0.0000 (17)	0.0349 (15)
N1	0.079 (2)	0.0743 (18)	0.0748 (16)	0.0356 (16)	0.0104 (15)	0.0285 (14)
N2	0.0716 (19)	0.0704 (17)	0.0855 (18)	0.0333 (15)	0.0092 (15)	0.0282 (14)
C1	0.078 (2)	0.0649 (19)	0.0689 (19)	0.0273 (18)	0.0089 (17)	0.0181 (15)
C2	0.068 (2)	0.0613 (18)	0.0666 (18)	0.0211 (15)	0.0059 (15)	0.0160 (14)
C3	0.071 (2)	0.0540 (18)	0.090 (2)	0.0132 (17)	-0.0072 (18)	0.0111 (16)
C4	0.065 (2)	0.0647 (19)	0.090 (2)	0.0149 (16)	-0.0079 (17)	0.0122 (17)
C5	0.0624 (19)	0.072 (2)	0.091 (2)	0.0177 (15)	0.0000 (16)	0.0272 (17)
C6	0.082 (2)	0.0569 (17)	0.134 (3)	0.0146 (16)	-0.035 (2)	0.0212 (19)
C7	0.071 (2)	0.068 (2)	0.119 (3)	0.0139 (18)	-0.021 (2)	0.024 (2)
C8	0.064 (2)	0.067 (2)	0.100 (3)	0.0135 (16)	-0.0078 (17)	0.0302 (18)
C9	0.097 (5)	0.108 (6)	0.076 (3)	0.048 (4)	0.020 (3)	0.040 (3)
C10	0.103 (5)	0.083 (4)	0.093 (4)	0.033 (4)	0.002 (3)	0.027 (3)
C8'	0.064 (2)	0.067 (2)	0.100 (3)	0.0135 (16)	-0.0078 (17)	0.0302 (18)
C9'	0.097 (5)	0.108 (6)	0.076 (3)	0.048 (4)	0.020 (3)	0.040 (3)
C10'	0.103 (5)	0.083 (4)	0.093 (4)	0.033 (4)	0.002 (3)	0.027 (3)
C11	0.075 (2)	0.0609 (19)	0.086 (2)	0.0230 (18)	0.0118 (18)	0.0229 (16)
C12	0.063 (2)	0.0578 (17)	0.0732 (18)	0.0205 (15)	0.0092 (15)	0.0195 (14)
C13	0.064 (2)	0.0537 (18)	0.107 (3)	0.0101 (16)	-0.0006 (18)	0.0200 (17)
C14	0.057 (2)	0.0608 (19)	0.112 (3)	0.0107 (16)	-0.0085 (18)	0.0231 (18)
C15	0.0576 (16)	0.0601 (16)	0.0705 (17)	0.0166 (13)	0.0037 (13)	0.0203 (13)
C16	0.0581 (18)	0.0659 (18)	0.100 (2)	0.0123 (15)	0.0015 (16)	0.0355 (18)
C17	0.056 (2)	0.066 (2)	0.105 (3)	0.0164 (16)	-0.0043 (17)	0.0292 (18)
C18	0.0528 (17)	0.0590 (18)	0.082 (2)	0.0124 (15)	-0.0022 (14)	0.0187 (15)
C19	0.080 (2)	0.0733 (19)	0.092 (2)	0.0299 (18)	0.0063 (18)	0.0227 (17)
C20	0.094 (3)	0.107 (3)	0.095 (2)	0.041 (2)	0.010(2)	0.047 (2)

Geometric parameters (Å, °)

O1—N1	1.407 (3)	С9'—Н9'А	0.9300
O1—H1	0.85 (4)	С9'—Н9'В	0.9300
O2—N2	1.408 (3)	C10'—H10D	0.9600
O2—H2	0.85 (4)	С10'—Н10Е	0.9600
N1—C1	1.266 (4)	C10'—H10F	0.9600
N2—C11	1.261 (5)	C11—C12	1.455 (4)
C1—C2	1.451 (4)	C11—H11	0.9300
C1—H1A	0.9300	C12—C13	1.316 (5)
C2—C3	1.320 (5)	C12—C17	1.489 (5)
C2—C7	1.506 (5)	C13—C14	1.495 (4)
C3—C4	1.487 (4)	С13—Н13	0.9300
С3—Н3	0.9300	C14—C15	1.520 (4)

C4—C5	1.529 (5)	C14—H14A	0.9700
C4—H4A	0.9700	C14—H14B	0.9700
C4—H4B	0.9700	C15—C18	1.511 (4)
C5—C6	1.500 (5)	C15—C16	1.527 (4)
C5—C8	1.514 (4)	С15—Н15	0.9800
С5—Н5	0.9800	C16—C17	1.514 (4)
C6—C7	1.515 (5)	C16—H16A	0.9700
С6—Н6А	0.9700	C16—H16B	0.9700
С6—Н6В	0.9700	С17—Н17А	0.9700
С7—Н7А	0.9700	С17—Н17В	0.9700
С7—Н7В	0.9700	C18—C19	1.316 (5)
C8—C9	1.327 (8)	C18—C20	1.485 (5)
C8—C10	1.500 (8)	С19—Н19А	0.9300
С9—Н9А	0.9300	С19—Н19В	0.9300
С9—Н9В	0.9300	C20—H20A	0.9600
C10—H10A	0.9600	C20—H20B	0.9600
C10—H10B	0.9600	С20—Н20С	0.9600
C10—H10C	0.9600		
N1—O1—H1	94 (3)	H10E—C10'—H10F	109.5
N2—O2—H2	106 (3)	N2—C11—C12	121.0 (3)
C1—N1—O1	111.9 (3)	N2—C11—H11	119.5
C11—N2—O2	112.1 (3)	C12—C11—H11	119.5
N1—C1—C2	121.6 (3)	C13—C12—C11	120.0 (3)
N1—C1—H1A	119.2	C13—C12—C17	121.9 (3)
C2—C1—H1A	119.2	C11—C12—C17	118.0 (3)
C3—C2—C1	120.4 (3)	C12—C13—C14	124.6 (3)
C3—C2—C7	121.3 (3)	С12—С13—Н13	117.7
C1—C2—C7	118.3 (3)	C14—C13—H13	117.7
C2—C3—C4	125.1 (3)	C13—C14—C15	112.1 (3)
С2—С3—Н3	117.5	C13—C14—H14A	109.2
С4—С3—Н3	117.5	C15—C14—H14A	109.2
C3—C4—C5	112.7 (3)	C13—C14—H14B	109.2
C3—C4—H4A	109.1	C15—C14—H14B	109.2
С5—С4—Н4А	109.1	H14A—C14—H14B	107.9
C3—C4—H4B	109.1	C18—C15—C14	112.0 (2)
C5—C4—H4B	109.1	C18—C15—C16	114.2 (2)
H4A—C4—H4B	107.8	C14—C15—C16	108.9 (3)
C6—C5—C8	114.0 (3)	C18—C15—H15	107.1
C6—C5—C4	109.6 (3)	C14—C15—H15	107.1
C8—C5—C4	111.3 (3)	С16—С15—Н15	107.1
С6—С5—Н5	107.2	C17—C16—C15	111.1 (2)
С8—С5—Н5	107.2	C17—C16—H16A	109.4
С4—С5—Н5	107.2	C15—C16—H16A	109.4
C5—C6—C7	112.3 (3)	C17—C16—H16B	109.4
С5—С6—Н6А	109.2	C15—C16—H16B	109.4
С7—С6—Н6А	109.2	H16A—C16—H16B	108.0
С5—С6—Н6В	109.2	C12—C17—C16	112.7 (3)
С7—С6—Н6В	109.2	С12—С17—Н17А	109.0
H6A—C6—H6B	107.9	С16—С17—Н17А	109.0

C2—C7—C6	111.9 (3)	C12—C17—H17B	109.0
С2—С7—Н7А	109.2	С16—С17—Н17В	109.0
С6—С7—Н7А	109.2	H17A—C17—H17B	107.8
С2—С7—Н7В	109.2	C19—C18—C20	122.0 (3)
С6—С7—Н7В	109.2	C19—C18—C15	120.0 (3)
Н7А—С7—Н7В	107.9	C20—C18—C15	118.0 (3)
C9—C8—C10	120.8 (8)	C18—C19—H19A	120.0
C9—C8—C5	124.4 (6)	C18—C19—H19B	120.0
C10—C8—C5	114.7 (6)	H19A—C19—H19B	120.0
С8—С9—Н9А	120.0	C18—C20—H20A	109.5
С8—С9—Н9В	120.0	C18—C20—H20B	109.5
Н9А—С9—Н9В	120.0	H20A-C20-H20B	109.5
Н9'А—С9'—Н9'В	120.0	C18—C20—H20C	109.5
H10D-C10'-H10E	109.5	H20A-C20-H20C	109.5
H10D—C10'—H10F	109.5	H20B—C20—H20C	109.5
O1—N1—C1—C2	-178.2 (3)	O2—N2—C11—C12	178.3 (3)
N1—C1—C2—C3	179.9 (3)	N2-C11-C12-C13	176.4 (3)
N1—C1—C2—C7	1.2 (5)	N2-C11-C12-C17	-2.5 (5)
C1—C2—C3—C4	-178.0 (3)	C11-C12-C13-C14	-177.1 (3)
C7—C2—C3—C4	0.7 (6)	C17—C12—C13—C14	1.7 (6)
C2—C3—C4—C5	13.1 (5)	C12-C13-C14-C15	15.1 (6)
C3—C4—C5—C6	-42.4 (4)	C13-C14-C15-C18	-172.6 (3)
C3—C4—C5—C8	-169.4 (3)	C13-C14-C15-C16	-45.3 (4)
C8—C5—C6—C7	-174.0 (4)	C18-C15-C16-C17	-172.3 (3)
C4—C5—C6—C7	60.5 (5)	C14—C15—C16—C17	61.8 (4)
C3—C2—C7—C6	15.8 (5)	C13—C12—C17—C16	13.8 (5)
C1—C2—C7—C6	-165.5 (3)	C11—C12—C17—C16	-167.3 (3)
C5—C6—C7—C2	-46.7 (5)	C15-C16-C17-C12	-45.5 (4)
C6—C5—C8—C9	-51.0 (9)	C14—C15—C18—C19	-109.8 (4)
C4—C5—C8—C9	73.5 (8)	C16-C15-C18-C19	125.9 (3)
C6—C5—C8—C10	129.0 (7)	C14—C15—C18—C20	69.4 (4)
C4—C5—C8—C10	-106.4 (7)	C16-C15-C18-C20	-54.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O1—H1···N2	0.85 (4)	2.00 (2)	2.831 (4)	164 (5)
O2—H2…N1	0.85 (4)	2.04 (2)	2.811 (4)	150 (4)

Fig. 1